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Abstract—Person re-identification (ReID) aims to predict
whether two images from different cameras belong to the same
person. Due to low image quality and variance in view point and
body pose, it remains a difficult task. To solve the task, a model
is supposed to appropriately capture features that describe
body regions for identification. With the simple intuition that
explicitly incorporating ReID model with part awareness could
be beneficial for learning a more discriminative feature space,
we propose part segmentation as an assistant body perception
task during the training of a RelD model. Specifically, we add
a lightweight segmentation head to the backbone of RelD
model during training, which is supervised with part labels.
Note that our segmentation head is only introduced during
training and that it does not change network input or the
way of extracting RelD feature. Experiments show that part
segmentation considerably improves the performance of RelD.
Through quantitative and qualitative analyses, we further
reveal that body part perception helps ReID model to capture
a set of more diverse features from the body, with decreased
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similarity between part features and increased focus on different
body regions. We experiment with various representative RelD

models and achieve consistent improvement on several
large-scale  datasets including Market1501, CUHKO3,
DukeMTMC-reID and MSMT17. E.g. on MSMT17, our

method increases Rank-1 Accuracy of GlobalPool-ResNet-
50, PCB and MGN by 2.3%, 2.9% and 3.9%, respectively.
Incorporated with MGN, our model achieves state-of-the-art
performance, with Rank-1 Accuracy 95.8%, 78.8%, 90.0% and
84.0% on four datasets, respectively.

Index Terms—Person re-identification, part awareness, part
segmentation, multi-task learning.

I. INTRODUCTION

ERSON re-identification is a fundamental task in video

surveillance and smart retail, providing support for pedes-
trian retrieval and cross-camera tracking [1], [2], efc. It aims to
predict whether two images from different cameras belong to
the same person. With large-scale datasets, as well as improved
feature extraction and metric learning methods, recent years
have seen great progress in this task [3]-[10]. However, due
to degraded image quality, pose and view point variation, efc.,
it still remains a tough problem.

Generally speaking, it is desirable for a ReID model to cap-
ture discriminative features that well represent body regions,
in order for accurate identification. From this perspective,
we believe that the awareness of body parts should be an
underlying capability of the model. However, in most existing
methods, the model is merely supervised by identity labels.
We argue that these models may be short of part sensitivity.
To enhance such ability of a ReID model, we propose to train
RelD with an additional task of part perception. Concretely,
we connect a lightweight segmentation head to the backbone
and supervise it with part labels, during the training of a
normal ReID model. The idea is illustrated in Fig. 1. Here
we achieve part awareness by ensuring that the model under-
stands which body part the current pixel on the feature map
belongs to.

In our framework, the whole backbone is shared between the
tasks of RelD and part segmentation. Hence after training is
finished, it is appropriately enhanced with part knowledge. The
proposed method can be viewed as a regularization for feature
learning, without altering network input, the way of extracting
RelD feature, or RelD optimization settings. In addition, after
training, the segmentation head is simply removed. These
merits make our method easy to integrate with existing models.
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Fig. 1. Overview of our method. Generally speaking, distinguishing between
different identities requires a model to capture discriminative features from
body regions. We believe that perception of body structure should be an under-
lying capability of a ReID model. To enhance such capability, we propose to
extend the backbone with a Part Segmentation (PS) head during training.
In the figure, the blue branch is the normal routine of a ReID model, while
the orange one is what we propose in this paper. Note that our method does
not change network input, how RelD features are extracted, or optimization
settings of RelD. Besides, the PS branch can be simply stripped off after
training is finished.

We validate the proposed method with several representa-
tive RelD models including GlobalPool [11], PCB [9] and
MGN [10], on four large-scale datasets Market1501 [12],
CUHKO3 [13], DukeMTMC-reID [14] and MSMT17 [15].
The proposed part segmentation constraint consistently
improves upon these models on all datasets (Fig. 6). On the
largest dataset MSMT 17, our method boosts Rank-1 Accuracy
by 2.3%, 2.9% and 3.9% for GlobalPool-ResNet-50, PCB
and MGN, respectively. When applied to MGN, our model
achieves state-of-the-art performance, with Rank-1 Accuracy
95.8%, 78.8%, 90.0%, 84.0% (and mAP 88.7%, 74.4%,
79.9%, 62.4%) on four benchmarks, respectively.

To reveal the changes that part segmentation brings to RelD
features in a quantitative way, we base on PCB and calculate
part similarity in feature space. Results show that a set of
more diverse features are learned (Fig. 9). We reckon that the
increased diversity between part features in turn spans a larger
and more discriminative space for identification. Through
Grad-cam [16] visualization on MGN, we also discover that
the proposed method helps ReID model to emphasize on more
regions on human body. We believe that it reduces the risk
of overfitting to salient body regions and facilitates learning
comprehensive RelD features. Extensive ablation experiments
are also conducted to analyze key factors of the proposed
method, including part granularity in segmentation supervi-
sion, structure of the segmentation head, impact on each part,
etc. To be complete, we also confirm that the improvement in
RelD is generalizable across domains.

The contribution of this paper is as follows. 1) We pro-
pose to equip RelD model with part awareness by explicit
part segmentation supervision. 2) Extensive experiments are
conducted to reveal the mechanism of improvement brought by
part awareness learning. 3) The proposed method consistently
improves over several representative ReID models. Our final
model achieves state-of-the-art performance on four large-
scale benchmarks.

II. RELATED WORK
A. Person Re-Identification

Person re-identification is an important task in video
surveillance, which supports pedestrian retrieval and
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multi-target-multi-camera tracking (MTMCT) [1], [2]. Its
purpose is to predict whether two images from different
cameras belong to the same person. Both discriminative fea-
ture extractor and effective metric learning are indispensable
for the task. For feature extraction, the common baseline
[1], [5], [6], [17] is to perform global average (or max)
pooling on the feature map of a backbone and obtain one
feature vector for an image. The backbone, e.g. ResNet-
50 [18], is originally designed for common object recognition.
To improve upon this paradigm, there is one group of works
[9], [10], [19]-[21] paying attention to multiple body
regions, which extract multiple feature vectors from different
image (or body) regions and concatenate them into a final
feature representation. Besides, there is a method [22] that
considers body orientation and extracts distinct features for
different views. Another line of works [23], [24] devise
backbones which are more suitable for RelD, with the
benefits of attention mechanism, multi-scale feature, or
being lightweight, efc. In terms of metric learning, the most
representative work is triplet loss [25], which constrains
the distance relation among a triplet of samples. A triplet
(anchor, positive, negative) consists of two persons,
where anchor and positive are from the same person, and
negative from the other. Triplet loss requires the distance
between (anchor, negative) to be larger than that between
(anchor, positive) by a margin. Hermans et al. [5] construct
online and hard triplets inside each batch composed of
P identities with K samples for each. To pay attention
to more triplets within a batch, Wang et al. [26] loop
through all (anchor, positive) pairs, while sampling
negative instances under a gaussian distribution, whose
standard deviation is controlled in the manner of curriculum
learning. Chen et al. [27] proposes quadruplet loss, which
extends a triplet with a sample from the third identity,
to ensure larger inter-class variation and smaller intra-class
variation.

B. Body Knowledge Assisted RelD

Additional body information has been widely adopted in
person RelD. Su er al. [28] use key points to crop body parts,
which are then normalized and combined into a new image for
network input. Kalayeh er al. [29] train a part segmentation
model on human parsing dataset LIP [30] to predict 4 body
parts as well as foreground. These body masks are then
used to perform local region pooling on RelD feature maps.
Xu et al. [31] share similar idea, but with regions generated
from key points. Besides, part visibility is also integrated
for computing the final feature. Sarfraz et al. [22] directly
concatenate 14 key point confidence maps with the image
as network input, letting the ReID model learn alignment
in an automatic way. Suh et al. [32] propose a two-stream
network, a RelD stream and a pose estimation stream, and
use bilinear pooling to obtain part-aligned feature. Recently,
Zhang et al. [33] propose DSA-reID which contains two
streams. The first stream utilizes only the original image,
while the second stream uses UV coordinates to cut out and
resize 24 body parts before feeding them to the ReID network.
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With the guidance of the second stream during training,
the first stream alone can achieve spatial alignment during
testing. Comparison with Our Method. 1) The methods
mentioned above mainly focus on fine-grained feature and/or
part alignment, while ours focuses on enhancing ReID model
with part awareness. 2) The former modifies network input
or the way of pooling RelD feature, while the latter does
not. Consequently, the method proposed in this paper can
be easily incorporated into those aforementioned models to
achieve the benefits of both worlds. 3) From the perspective of
efficiency, all these methods, except DSA-reID, set the need
for an additional part segmentation or key point estimation
model during both training and testing. Moreover, the addi-
tional model is independent of the ReID model in terms of
model structure and parameters. Our method, in the manner
of multi-task learning, does not require an extra model, for
both training and testing. The proposed lightweight head can
even be a single 1 x 1 Conv classifier with equal benefit
(Section IV-G), which is simply stripped off after training.

III. METHODOLOGY

In person re-identification, a model measures similarity
between images in order to determine whether they are from
the same identity. Basically, it is desirable for the model
to capture discriminative features representing body regions.
From this point, we believe that perception of body parts
should be an underlying ability of a ReID model. To enhance
such a capability, we take into account part awareness learning
during RelD training. To be more specific, we expect a model
to understand which body part it is processing, for each pixel
on the feature map. As a straightforward solution, we propose
to extend the backbone with a Part Segmentation (PS) head
during the training of a ReID model. Note that our method
does not modify network input or the way of extracting
RelD features. Once training is finished, body awareness is
already embedded in the backbone, and the extra head can
be removed. An overview of the method is depicted in Fig. 1.
The integration with GlobalPool, PCB and MGN are illustrated
in Fig. 4, 5 and 8, respectively.

At the current step, we mainly intend the PS head to work
as some constraint on ReID backbone, not to perfectly predict
a high resolution label map for downstream tasks. As a result,
we do not devise it so sophisticated as is done in standard
pixel level predicting tasks like semantic segmentation or
super resolution, etc. We design four types of head structures
with different depth and output resolution as in Fig. 2. These
variants are analyzed in Section IV-G, with type (c) in our
final models.

Since existing ReID datasets do not come with part anno-
tations, we resort to some public part segmentation dataset.
Specifically, we utilize COCO Densepose dataset [34] and re-
arrange annotations to have 7 body parts, as shown in Fig. 3a.
We then train DANet [35], a model originally designed for
semantic segmentation, on this part segmentation dataset. With
this trained model, we predict pseudo part labels on RelD
datasets. The pseudo labels predicted on RelD images are
illustrated in Fig. 3b. Details of training DANet can be found
in Section I'V-B.
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Fig. 2. Four types of part segmentation heads used in our experiments.
All 3 x 3 convolution and deconvolution layers have 256 output channels.
Deconvolution is for learnable upsampling, which results in higher output
resolution. The 1 x 1 convolution is a pixel-wise classifier, predicting which
of the 7 parts or background each pixel belongs to. (a) Only classifier. (b) With
an additional Conv layer. (c) With an additional DeConv layer. (d) With two
additional DeConv layers.

Fig. 3. We re-arrange COCO Densepose [34] annotations to have 7 body
parts (a), train a part segmentation model, and predict pseudo labels for RelD
datasets (b).

The overall loss function of a model with part awareness
learning can be denoted by

L= ﬁreid —i—iﬁps, (1)

where £7¢4 is RelD loss of the original model, and £7S is the
newly introduced part segmentation loss. 4 is the loss weight
that balances the importance of ReID loss and segmentation
loss. By default, we set . = 1, and other values will be
discussed in Section I'V-H.

We denote a training set as {(Z;, y;, Si)|li = 1,2,..., N},
where N is the number of images. Z; is the i-th image with
identity label y; € {1, 2, ..., C}, and segmentation label being
a2-dimmap S; € {1,..., M}*W Here C is the total number
of identities, and M is the number of body part classes plus
background. By default M = 8, while analysis of other cases
is conducted in Section I'V-F.
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A. L7 for GlobalPool Model

The GlobalPool model predicts a probability distribution
p; for image Z;, where p; € RC. Multi-class cross entropy
loss is adopted, which is negative log likelihood of the output
node corresponding to ground truth. The loss over a batch is
computed as

1
ﬁreid - __ lo ( i) (2)
N, ; 2\ Pi,y )

in which N, is number of images in a batch, and p; ), is the
yi-th element of p;.

B. L for PCB

PCB evenly divides feature map of Conv5 into six hori-
zontal stripes and performs feature learning inside each stripe.
It predicts six probabil_ity distributions { pl.] lj=1,2,...,6}
for image Z;, where pi] € RC. Multi-class cross entropy loss
is adopted for each stripe. The loss over a batch is computed
as

N, 6
. 1 .
e LSSl
i=1 j=1

C. L7 for MGN

There are three branches in MGN, as illustrated in Fig. 8.
In each branch, features obtained by global max pooling
are supervised with both cross entropy loss and triplet loss.
The second branch further splits feature map into two stripes,
and third branch into three stripes. Each of these five stripes
are supervised by cross entropy loss.

Consider a triplet (Z;1,Zj2,Z;3) within a batch, where
(Zi1,Z») have the same identity while (Z;1,Z;3) are from
different persons. The loss imposed on this triplet, w.r.t. global
feature (fljl, flJQ, fi]3),j e {1,2,3},is

LT, T, Tis) = 6+ d(f, ) —d(f, fDle, @

in which j indexes three branches, 6 = 0.1 is a margin,
and d(-, -) is euclidean distance. According to BatchHard [5]
sampling strategy, the number of triplets in a batch is the
same as batch size Nj. The triplet loss inside a batch is thus
calculated as

1

tri =
3

3 .
> 3L @0 Tn. Tn). 5)

i1,i2,i3 j=1

We denote the probability distributions predicted from
five stripes plus three global ones for image Z; as {pij,

j = 1,2,...,8}. The cross entropy loss over a batch is
computed as
1 N, 8 )
_ _ J
Lee=~3m, ;jglog(pi,yi). (6)

As a result, the total RelD loss for MGN is
ﬁreid = £ce + £tri~ (7)
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D. Segmentation Loss LP*

Suppose the output probability tensor of the segmentation
head for image Z; is G; € RM>*H*W_ Consider a spatial
location (h, w) of G;, the corresponding probability vector
is denoted by ¢ € RY, and the ground truth label by
s € {1,2,..., M}. The segmentation loss at this location is
negative log likelihood L£7*(i, h, w) = — log(gs). To aggregate
segmentation loss over locations and the batch of images,
we propose to treat different types of body parts fairly.
Concretely, instead of naively averaging L£P°(i, h, w) across
spatial and batch dimensions, we first calculate the sum of

loss for each part, L{ums = D.s., - L@, h,w), and
the corresponding number of locations Q; = [Sip.w = S|,
s =1,2,..., M. The average loss of part s is then computed
as
1
—Lh o, if Qg > 0,
Lings = 07 70T ®)
0, otherwise
Finally, the overall loss of the batch is calculated as
| M
L = £51§g,s’ 9)

z?’le ]]'{QS > 0} s=1

where 1{-} is the indicator function which gives 1 if the
condition holds and 0 otherwise. The above computation aver-
ages inside each part before averaging across parts, to avoid
large-size classes dominating the loss, e.g. background and
torso. It is important for small-size classes like foot and
head, which also contain much discriminative information for
ReID and should be equally attended. Note that for MGN,
the segmentation loss is calculated for three branches and then
averaged.

During multi-task training of RelD and part segmentation,
the optimization settings remain the same as original RelD
training, e.g. optimizer, batch size, learning rate, training
iteration, efc. The only difference is the additional PS loss
mentioned above.

IV. EXPERIMENT

The experiments are organized as follows. Section IV-A
introduces RelD datasets used in this paper. Section IV-B
details how to obtain pseudo part labels for RelD datasets.
Effectiveness of our method can be found in Section IV-C,
and comparison with state-of-the-art methods in Section IV-D.
In Section IV-E we try to answer why part awareness learn-
ing is beneficial for ReID. Some component analyses are
also included, i.e. part granularity in segmentation super-
vision (Section IV-F), structure of the segmentation head
(Section IV-G), loss weight of segmentation (Section IV-H),
RelD improvement for each part (Section IV-I), and choice of
domain adaptation method when training DANet on COCO
(Section IV-J). We also verify that the improvement in RelD
is generalizable across domains, in Section IV-K. Finally,
in Section IV-L, we demonstrate the segmentation result as
well as some RelD test cases. Note that our experiments
in Fig. 6, Fig. 7, TABLE II, TABLE III, TABLE 1V, TABLE V,
TABLE IX are run for five times with different random seeds,
whose scores are then averaged and reported.
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TABLE I
STATISTICS OF FOUR REID DATASETS, WITH EACH
ENTRY DENOTING #IDENTITIES / #IMAGES
Dataset Training Testing
Query Gallery

Market1501 751/ 12,936 750 / 3,368 750 / 15913
CUHKO03 767 1 7,365 700 / 1,400 700 / 5,332
DukeMTMC-relD 702 / 16,522 702 / 2,228 1,110 / 17,661
MSMT17 1,041 / 32,621 | 3,060/ 11,659 | 3,060 / 82,161

A. Datasets and Evaluation Metrics

We conduct our experiments on four large-scale per-
son RelD datasets, Market1501 [12], CUHKO3 [13],
DukeMTMC-reID [14] and MSMT17 [15]. Market1501 con-
tains 12,936 training images from 751 persons, 29,171 test
images from another 750 persons. The query set has
3,368 images and gallery set has 15,913. To increase the
difficulty of retrieval, the gallery set contains 2,798 distractor
images with just background or part of body. A total of 6
cameras are involved, and each identity appears at most
under 6 cameras. The images are detected by Deformable
Part Model (DPM) [36]. CUHKO03 contains DPM detected
and hand-cropped images, both with 14,096 images from
1,467 identities. Images of each person come from two disjoint
cameras. Following [17] to obtain a larger test set, we adopt
the new train/test protocol with 767 training identities and
700 testing ones. We experiment on the detected images,
since it is closer to real scenario. DukeMTMC-reID contains
16,522 training images from 702 persons, 19,889 test images
from another 1110 persons. The query set has 2,228 images
of 702 persons and gallery set has 17,661 images of 1110 per-
sons. 408 persons in gallery set are distractors, without sharing
identity with query set. A total of 8 cameras are involved.
The images are cropped from frames by human. MSMT17
is currently the largest dataset with challenging conditions.
A total of 126,441 bounding boxes of 4,101 identities are
annotated, which involve 15 cameras, wide light variety,
and different weather conditions. In the training set, there
are 32,621 bounding boxes of 1,041 identities. In test set,
there are 93,820 bounding boxes of 3,060 identities in total,
11,659 images as query set and 82,161 as gallery. Different
from other datasets, bounding boxes are detected by Faster
RCNN [37] in MSMT17. Statistics of three datasets are listed
in TABLE I. Metrics. Two common evaluation metrics are
used, Cumulative Match Characteristic (CMC) [38] for which
we report the Rank-1, -5 and -10 accuracy, and mean Average
Precision (mAP) [12].

B. Details of Training DANet on COCO

We use DANet [35] to train a part segmentation model on
COCO Densepose [34] data. Model. The backbone is ResNet-
50. For simplicity, we do not use Channel Attention Module,
thus there is only one loss term to optimize. The multi-dilation
parameter is set to (2, 4, 8). Dataset. The COCO Densepose
dataset contains 46,507 person bounding boxes for training
and 2,243 for validation. It annotates segmentation labels for
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s Bec o

Input
Image
PS Head —>

Fig. 4. Adding part segmentation head to GlobalPool [11] baseline. GMP:
Global Max Pooling, Em512: 512-dimension (FC, BN, ReLU) embedding,
FC: Fully Connected Layer, CE Loss: Cross Entropy Loss. The output of the
embedding (with dashed red boundary) is used for RelD testing. The orange
branch is what we propose in this paper.

GMP

Backbone

FC: Softmo MCE Loss

|
nput Backbone °
Image °

FC, Softmax

PS heod MMCE Loss

Fig. 5. Adding part segmentation head to PCB [9]. LMP: Local Max Pooling,
Em256: 256-dimension (FC, BN, ReLU) embedding, FC: Fully Connected
Layer, CE Loss: Cross Entropy Loss. There are six ReID heads in total, three
of which are omitted. The outputs of the six embedding layers (with dashed
red boundaries) are used for RelD testing. The orange branch is what we
propose in this paper.

14 parts, i.e. {torso, right hand, left hand, left foot, right foot,
right upper leg, left upper leg, right lower leg, left lower leg,
left upper arm, right upper arm, left lower arm, right lower
arm, head}. To make the segmentation model easier to train,
we fuse left/right parts into one class and fuse hand into
lower arm, getting 7 parts eventually. Style Augmentation.
In our experiments, we find that model trained on COCO
images has pleasing performance on COCO validation set,
but fails in some cases of RelD data, sometimes having
noisy prediction. We hypothesize that low resolution of RelD
images is a key factor. We try to blur COCO images, but
the results do not improve obviously. To train a model most
suitable for ReID datasets, we transform COCO images to
the style of RelD datasets, using SPGAN [39]. We then train
a segmentation model with the combination of original and
transferred COCO images, with 186,028 training images in
total. We find this method obviously improves prediction on
RelD datasets. Common Augmentation. The original DANet
model targets scene segmentation which tends to require high-
resolution images, while we tackle person part segmentation
with a bounding box input each time. So we can use much
smaller images. We denote a variable base size by Spgse = 192.
For each image in the current batch, we randomly select a
value in interval [0.75 X Spase, 1.25 X Spase] as the shortest
size and resize the image, without changing the height /width
ratio. Afterwards, the image is rotated by a random degree
in range [—10, 10]. Denoting another variable crop size by
Scrop = 256, if any image side is smaller than Sc,,,, we have
to pad the image with zeros. After padding, we randomly crop
out a Serop X Scrop square region, which is normalized by
ImageNet image mean and standard deviation before being
fed to the network. Random horizontal flipping is also used
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Fig. 7.  Effectiveness of part awareness learning for RelD across different
backbones. The results are obtained with GlobalPool on MSMT17.

for augmentation. Optimization. We use SGD optimizer, with
learning rate 0.003, which is multiplied by 0.6 after every
epoch. The training takes 5 epochs. The batch size is set to 16,
and two GPUs are used for training. Testing. During testing,
we simply resize each image to have shortest size as Spgse, i.€.
192, while keeping the aspect ratio. No cropping or any other
augmentation is applied. The final pixel accuracy on COCO
val set (original COCO images, without changing style) is
90.3%, and mloU is 66.8%.

C. Effectiveness of Part Awareness

To verify the effectiveness of incorporating ReID models
with part awareness, we experiment on three representative
ReID models, i.e. GlobalPool [11], PCB [9] and MGN [10].
The models during training, with part segmentation heads, are
depicted in Fig. 4, Fig. 5 and Fig. 8, respectively. To verify that
our method is suitable for combining with different types of
backbones, in GlobalPool we experiment with ResNet-50 [18],
MobileNetV2 [40], DenseNet-121 [41] and OSNet [24]. The
first three come from ImageNet recognition, with ResNet-
50 most commonly used in ReID models, while OSNet is
specially designed with multi-scale features for RelD. In this
section, the part segmentation head is type (c) from Fig. 2,
and loss weight 4 in Equation 1 is set to 1.

1) GlobalPool: The integration of part segmentation with
GlobalPool [11] model is shown in Fig. 4. As common practice
to increase feature resolution in deep layers, when using
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Effectiveness of part awareness learning for RelD, on three representative models and four large-scale benchmarks. GP_R50: GlobalPool model

ResNet-50, MobileNetV2 or DenseNet-121 as the backbone,
we remove the final feature downsampling, i.e. changing the
stride of corresponding convolution layer from 2 to 1 for
ResNet-50 and MobileNetV2, and omitting the corresponding
pooling operation for DenseNet-121. Global max pooling (or
average pooling for OSNet) is performed after the last con-
volution layer, output of which is then sent to an embedding
layer and a classifier in turn. Optimization for ResNet-50,
MobileNetV2 and DenseNet-121. We use SGD optimizer
with a momentum of 0.9 and weight decay of Se-4. Newly
added layers have initial learning rate of 0.02, while layers
to fine-tune use 0.01, all of which are multiplied by 0.1 after
every 25 epochs. The training is terminated after 60 epochs.
Batch size is set to 32. Input images are resized to w X h =
128 x 256. Only random flipping is used as data augmentation
during training. Optimization for OSNet. According to the
official code of OSNet, AMSGrad [42] is used as optimizer.
Cosine annealing is adopted as the learning rate scheduler,
with an initial learning rate of 0.0015, step size of 20 epochs,
and 250 training epochs in total. In the first 10 epochs, only the
classifier is optimized. Label smoothing is also applied. Batch
size is set to 64. Input images are resized to w xh = 128 x256.
Both random flipping and random erasing [43] are used as
data augmentation. Result. The scores of GlobalPool based
on ResNet-50 (GP_R50), with and without part segmentation
(PS), are recorded in Fig. 6. It can be seen that our PS head
brings obvious improvement on four datasets, with Rank-1
Accuracy boost 1.0%, 5.8%, 0.4%, 2.3% respectively, and
mAP improvement 1.7%, 4.5%, 0.9%, 2.7% respectively. The
experiments of GlobalPool based on MobileNetV2, DenseNet-
121 and OSNet are conducted on MSMTI17, as reported
in Fig. 7. The improvement brought by PS is consistent across
backbone types, increasing Rank-1 Accuracy by 1.4%, 2.4%,
2.5%, and mAP by 1.7%, 3.2%, 3.7% for MobileNetV2,
DenseNet-121 and OSNet respectively.

2) PCB: The PCB [9] model, as well as our part seg-
mentation head denoted in orange, are illustrated in Fig. 5.
PCB uses ResNet-50 [18] as the backbone, with stride set to
1 in Conv5. However, instead of obtaining a spatially global
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Fig. 8. Adding part segmentation head to MGN [10]. GMP: Global Max Pooling, LMP: Local Max Pooling, Em#: #-dimension (FC, BN, ReLU) embedding,
FC: Fully Connected Layer, FC256: 256-dimension FC, CE Loss: Cross Entropy Loss, Tri Loss: Triplet Loss. xM: M parallel heads operating on M different
regions of feature map. The outputs of the three FC and five embedding layers with dashed red boundaries are used for RelD testing. The orange branches

are what we propose in this paper. Note that three PS heads share parameters.

feature for each image, PCB evenly divides feature map of
Conv5 into six horizontal stripes and performs pooling inside
each stripe. The purpose of this kind of local pooling is to
explicitly capture features from multiple body regions. What’s
more, feature pooled from each region is supervised by its own
identity loss. In other words, the model urges each region to
extract features that are discriminative enough on their own for
identification. Optimization. The optimization is the same as
in ResNet-50 based GlobalPool, except that input image has
resolution w x h = 128 x 384, and that embedding size is now
256. Result. The scores of PCB and PCB+PS are recorded
in Fig. 6. We observe that PCB has huge improvement over
GlobalPool. Upon this strong model, our proposal still brings
non-trivial boost, with 0.7%, 2.1%, 1.0%, 2.9% increase in
Rank-1 Accuracy for four datasets respectively, and 1.5%,
2.9%, 1.3%, 3.7% in mAP.

3) MGN: Another local feature based model MGN [10] also
draws much attention from the literature. For clarity, we show
the model in Fig. 8. The improvement of MGN upon PCB
is multi-fold. First, MGN proposes multi-granularity feature
representation by pooling from multiple levels of stripe sizes.
It has a branch that splits feature map into two stripes, and
another branch into three stripes. Second, it emphasizes not
only local features, but also global ones, with the resurgence
of global max pooling. Finally, MGN integrates the benefits of
both cross entropy loss and triplet loss, which is supposed to
learn a more discriminative feature space. Optimization. For
training, PK sampling [5] is adopted, with P = 16 persons
and K = 8 images per person in a batch. Input images have
size w x h = 128 x 384. Both random flipping and random
erasing [43] are used during training. Test-time flipping is
also performed. We use SGD optimizer with a momentum

of 0.9 and weight decay of 5e-4. For RelD, cross entropy
loss and triplet loss are iteratively trained, base learning rates
being 0.1 and 0.01 respectively. We adopt warmup in the first
20 epochs, decay learning rates (x0.1) at 140, 180 epochs, and
terminate training at 200 epochs. MGN also bases on ResNet-
50, whose stride in Conv5 is set to 1 in all three branches in
our experiments. Result. Refer to Fig. 6, we see that scores
of MGN are significantly superior to PCB. Nonetheless, our
part awareness learning again brings consistent improvement.
Compared to MGN, MGN+-PS increases Rank-1 Accuracy by
0.7%, 3.8%, 0.7%, 3.9%, and mAP by 1.9%, 3.9%, 1.6%,
6.2%, on four datasets respectively. On the largest dataset
MSMT17, the benefit of our method is even much more
prominent than on other datasets.

D. Comparison With State-of-the-Art Methods

We compare our final model MGN+PS with state-of-the-
art methods (SOTA) on Market1501, CUHKO03, DukeMTMC-
reID and MSMT17 in TABLE II, III, IV, V repectively. The
methods are separated into groups, including those using one
global feature for one image (G), those learn multiple regions
without assistance of body annotation (LMR), pose-guided
methods (PG), mask guided methods (MG), methods that
rigidly define multiple regions on the feature map to extract
features (RDMR), and attention based methods (A). Our
method achieves SOTA scores on four datasets, achieving first
place on three out of four datasets, and second on CUHKO3.
On Market1501, we are slightly superior to previous SOTA
Pyramid [21], with 0.1% (95.8% vs. 95.7%) increase in Rank-1
Accuracy, and 0.5% (88.7% vs. 88.2%) in mAP. On CUHKO3,
we are slightly worse than Pyramid, with a gap of 0.1%
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TABLE II

COMPARISON WITH STATE-OF-THE-ART METHODS ON MARKET1501.
G: GLOBAL FEATURE, LMR: LEARNED MULTIPLE REGIONS, PG:
POSE GUIDED, MG: MASK GUIDED, RDMR: RIGIDLY DEFINED
MULTIPLE REGIONS, A: ATTENTION. IN EACH COLUMN,

THE 1st AND 2nd HIGHEST SCORES ARE IN BOLD AND WITH
GRAY BACKGROUND, RESPECTIVELY

Methods Publication | Rank-1 mAP

DaRe [44] CVPRI138 86.4 69.3

G AOS [45] CVPR18 86.5 70.4
Cam-GAN [6] CVPRI138 89.5 71.6

OSNet [24] ICCV19 94.8 84.9

DG-Net [46] CVPR19 94.8 86.0

MSCAN [19] CVPR17 80.3 57.5

LMR AANet [47] CVPR19 93.9 82.5
CAMA [48] CVPR19 94.7 84.5

PDC [28] ICCV17 84.4 63.4

AACN [31] CVPR18 85.9 66.9

PG PSE [22] CVPRI18 87.7 69.0
PN-GAN [49] ECCV18 89.4 72.6

PABR [32] ECCV18 91.7 79.6

MGCAM [50] CVPRI138 83.8 74.3

MG SPRelD [29] CVPR138 92.5 81.3
DSA-reID [33] CVPR19 95.7 87.6

PCB [9] ECCV18 92.3 774
PCB+RPP [9] ECCV18 93.8 81.6

RDMR | HPM [51] AAAIL9 94.2 82.7
MGN [10] MM18 95.7 86.9

Pyramid [21] CVPR19 95.7 88.2

HA-CNN [23] CVPR18 91.2 75.7

A Mancs [26] ECCV18 93.1 82.3
CASN [52] CVPR19 94.4 82.8

IANet [53] CVPR19 94.4 83.1

MGN (Our Imp.) - 95.1 86.8

MGN+PS (Ours) - 95.8 88.7

(78.8% vs. 78.9%) in Rank-1 Accuracy, and 0.4% (74.4% vs.
74.8%) in mAP. On DukeMTMC-relD, our method surpasses
Pyramid by 1.0% (90.0% vs. 89.0%) in Rank-1 Accuracy, and
0.9% (79.9% vs. 79.0%) in mAP. In the case of MSMT17,
the proposed model surpasses all existing methods by a large
margin. The superiority over OSNet [24] reaches 5.3% (84.0%
vs. 78.7%) in Rank-1 Accuracy and 9.5% (62.4% vs. 52.9%)
in mAP. Note that MSMT17 is currently the largest dataset
with enormous divergence in terms of cameras, dates, weather
conditions, scenes, efc. From this perspective, we believe our
method will have considerable advantage in practice.

E. Influence of Part Awareness Learning on RelD Feature

In this section, we analyze in which way part awareness
learning affects RelD feature. We pay attention to PCB and
MGN in particular. Analysis on PCB. PCB has six horizontal
parts and we analyze similarity between part features. Since
ConvS5 is the deepest layer shared by all six ReID heads, for
each image, we calculate cosine similarity between its part
features pooled from Conv5, obtaining a 6 x 6 matrix. To ana-
lyze the statistical property, we average similarity matrices of

7475

TABLE III

COMPARISON WITH STATE-OF-THE-ART METHODS ON CUHKO03
detected SUBSET UNDER THE 767/700 PROTOCOL

Methods Publication | Rank-1 mAP
AOS [45] CVPR18 47.1 433
G MLEN [54] CVPRI138 52.8 47.8
DaRe [44] CVPR18 55.1 51.3
DG-Net [46] CVPR19 65.6 61.1
OSNet [24] ICCV19 72.3 67.8
LMR CAMA [48] CVPR19 66.6 64.2
PCB [9] ECCV18 61.3 54.2
PCB+RPP [9] ECCV18 63.7 57.5
RDMR | HPM [51] AAAIL9 63.9 57.5
MGN [10] MMI18 66.8 66.0
Pyramid [21] CVPR19 78.9 74.8
MG DSA-reID [33] CVPR19 78.2 73.1
HA-CNN [23] CVPRI138 41.7 38.6
A Mancs [26] ECCV18 65.5 60.5
CASN [52] CVPR19 71.5 64.4
MGN (Our Imp.) - 75.0 70.5
MGN+PS (Ours) - 78.8 74.4
TABLE IV
COMPARISON WITH STATE-OF-THE-ART
METHODS ON DukeMTMC-relD

Methods Publication | Rank-1 mAP
Cam-GAN [6] CVPRI138 78.3 57.6
G AOS [45] CVPR138 79.2 62.1
DaRe [44] CVPRI138 80.2 64.5
DG-Net [46] CVPR19 86.6 74.8
OSNet [24] ICCV19 88.6 73.5
CAMA [438] CVPR19 85.8 72.9
LMR AANet [47] CVPR19 87.7 74.3
PN-GAN [49] ECCV18 73.6 532
AACN ([31] CVPRI138 76.8 59.3
PG PSE [22] CVPR18 79.8 62.0
PABR [32] ECCV18 84.4 69.3
SPRelD [29] CVPRI138 84.4 71.0
MG DSA-reID [33] CVPR19 86.2 74.3
PCB [9] ECCV18 81.8 66.1
PCB+RPP [9] ECCV18 83.3 69.2
RDMR | HPM [51] AAAIL9 86.6 74.3
MGN [10] MMI18 88.7 78.4
Pyramid [21] CVPR19 89.0 79.0
HA-CNN [23] CVPR18 80.5 63.8
A Mancs [26] ECCV18 84.9 71.8
IANet [53] CVPR19 87.1 73.4
CASN [52] CVPR19 87.7 73.7
MGN (Our Imp.) - 89.3 78.3
MGN+PS (Ours) - 90.0 79.9

images over the whole test set. The overall similarity matrices
of PCB and PCB+PS are illustrated in Fig. 9. We have
following observations. First, we notice that the results show
large absolute values, with a minimum of 0.78. That is partially
because the last step of ResNet Conv5 is a ReLLU function
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TABLE V

COMPARISON WITH STATE-OF-THE-ART
METHODS ON MSMT17

Methods Publication | Rank-1 mAP

G GoogleNet [55] CVPRI15 47.6 23.0
PG PDC [28] Iccv17 58.0 29.7
G Verif-Identif [56] TOMM17 60.5 31.6
PG GLAD [57] MM17 61.4 34.0
RDMR | PCB [9] ECCV18 68.2 40.4
A IANet [53] CVPR19 75.5 46.8
G DG-Net [46] CVPR19 77.2 52.3
G OSNet [24] ICCV19 78.7 529
MGN (Our Imp.) - 80.1 56.2

MGN+PS (Ours) - 84.0 62.4

(b)

Fig. 9. RelD feature similarity between parts, averaged over whole test
set of MSMT 17. Lighter cell has higher value. Both matrices are symmetric.
(a) PCB. (b) PCB+PS.

which outputs non-negative values, leading to a large offset
in similarity value. Second, each part is more similar to
adjacent parts than those disjoint ones. That is undoubted
because of the spatial continuity of 2D convolution. Finally,
it is obvious that the cells on the right matrix are darker
than on the left. It means that with the assistance of part
segmentation training, part feature similarity is considerably
reduced. We reckon that our approach of forcing a segmenta-
tion head to predict part semantic at each location would make
RelD features from different parts distinct from each other.
Quantitatively, the similarity matrices may indicate reduced
feature redundancy between parts, which in turn spans a larger
and more discriminative space for person re-identification.
Analysis on MGN. In MGN, there is multi-way classification
upon global feature during training. To reveal whether part
awareness learning makes difference to where the model
focuses on the body, we resort to Grad-cam [16], a method that
demonstrates which regions of the input image are specially
emphasized by the model. We take the activation of Conv5 in
the second branch, as well as the gradient backwarded from
the corresponding global classifier. The Grad-cam result is
illustrated in Fig. 10. There is an obvious phenomenon that
the proposed part awareness learning helps the model attend
to more regions on human body. In this way, the extracted
features could be more comprehensive than those from the
original model. As a result, it avoids the model overfitting
to only salient regions and improves generalization ability

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Fig. 10. Visualization of Grad-cam [16] upon MGN and MGN+-PS trained
on MSMT17. In each of the six cases, the original image, Grad-cam of MGN,
and Grad-cam of MGN+PS are shown respectively. Warmer color means the
model pays more attention to those regions.

Different part granularities. We experiment on four types of label

i

Fig. 11.
granularities, i.e. Foreground, Two Parts, Four Parts, and Seven Parts.

accordingly. Though the above analyses are conducted upon
PCB and MGN, we think the implications share with other
models as well.

FE. Analysis of Part Granularity

In order to analyze the effect of part label granularity on
RelID performance, we try three extra granularity types, i.e.
Foreground, Two Parts and Four Parts, in addition to the
Seven Parts used in other sections of the paper. As illustrated
in Fig. 11, Foreground means we only classify foreground
and background; Two Parts means to separate out upper
body, lower body and background; Four Parts denotes that
part segmentation distinguishes between head, union of upper
torso and arms, upper legs, union of lower legs and feet,
and background. We conduct experiments on MSMT17 with
PCB and MGN, scores being recorded in TABLE VI. First,
we notice that simply distinguishing between foreground and
background (PCB + Foreground vs. PCB, and MGN -+
Foreground vs. MGN) benefits RelD, which may be due to
reducing distraction from background clutter. Second, further
separating upper body from lower body shows boost for MGN
(MGN + Two Parts vs. MGN + Foreground) but only brings
marginal difference for PCB (PCB + Two Parts vs. PCB
+ Foreground). Third, dividing the body into four parts has
superiority over two parts (Four Parts vs. Two Parts). And
finally, segmenting the body into seven parts achieves the most
improvement. We hold the conjecture that finer granularity
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TABLE VI

COMPARISON OF DIFFERENT PART GRANULARITIES FOR TRAINING
PS HEAD. RESULTS ARE OBTAINED ON MSMT17

Granularity H Rank-1 ‘ Rank-5 ‘ Rank-10 H mAP ‘
PCB 74.0 84.9 88.2 474
PCB + Foreground 75.7 86.0 89.2 493
PCB + Two Parts 75.6 86.2 89.3 494
PCB + Four Parts 76.1 86.4 89.3 50.0
PCB + Seven Parts 76.9 86.9 89.8 511
MGN 80.1 89.0 91.5 56.2
MGN + Foreground 82.6 90.7 929 60.0
MGN + Two Parts 83.0 90.9 93.1 60.4
MGN + Four Parts 83.6 91.2 93.4 61.7
MGN + Seven Parts 84.0 91.5 93.5 62.4
TABLE VII

COMPARISON OF DIFFERENT PART SEGMENTATION HEAD STRUCTURES
IN FIG. 2. RESULTS ARE OBTAINED ON MSMT 17

Structure H Rank-1 ‘ Rank-5 ‘ Rank-10 H mAP ‘

PCB 74.0 84.9 88.2 47.4
Type (a) 774 87.3 90.0 51.5
Type (b) 77.0 86.9 89.8 51.0
Type (c) 76.9 86.9 89.8 51.1
Type (d) 76.7 87.1 89.8 51.0
MGN 80.1 89.0 91.5 56.2
Type (a) 84.4 91.5 93.6 62.3
Type (b) 84.2 91.7 93.7 62.7
Type (¢) 84.0 91.5 93.5 62.4
Type (d) 83.8 91.4 93.4 61.8

in segmentation supervision impels RelD model to extract
distinct features from different regions.

G. Analysis of PS Head Structure

As in Fig. 2, we take four structures of PS head into account.
The difference between them resides in the number of Conv
and DeConv layers. Generally speaking, a deeper PS head
implies more independence from the RelD head(s); And more
deconvolution layers lead to higher output resolution, which
determines the resolution of segmentation supervision. We run
the analysis on PCB and MGN, with experiments carried out
on MSMT17. The results of four structures can be found in
TABLE VII. Surprisingly, directly connecting Conv5 with a
raw 1 x 1 Conv layer as part classifier (type a in Fig. 2) achieves
the best results for PCB, and best Rank-1 Accuracy for MGN.
The phenomenon indicates strong connection between the
two tasks and gets rid of the need for complicated structure
design for segmentation. The deepest head (type d), having
two DeConv layers and a Conv classifier, still has large
improvement over original PCB and MGN, which makes it
feasible to generate high-resolution segmentation masks if
required by other use cases. As for the choice in our final
model, we adopt type c, with a DeConv layer and a Conv
classifier, in order to achieve a balance between resolution of
mask prediction and RelD performance.
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Fig. 12.  Effect of PS loss weight 1 on RelD performance, reported on

MSMT17. (a) PCB+PS. (b) MGN+PS.

H. Influence of PS Loss Weight

As stated before, the loss weight A in Equation 1 deter-
mines the importance of part segmentation during training.
We experiment on PCB+PS and MGN+PS, while varying 4
with values 0, 0.1, 0.5, 1, 2, 5, and 10. The RelID scores
on MSMT17 are plotted in Fig. 12. The plots show that,
at the beginning, RelD performance benefits from increasing
segmentation loss weight, reaching a summit where 4 = 5 for
PCB and 4 = 2 for MGN. Further increasing loss weight drags
the curves downward. One significant discrepancy between
PCB+PS and MGN+PS is that, when 4 = 10, PCB+PS still
has large improvement (3.9% in Rank-1 Accuracy and 4.9%
in mAP) over PCB, while MGN+PS only shows marginal
improvement (0.2% in Rank-1 Accuracy and 0.0% in mAP)
over MGN. Finally, we also conclude that in a wide range of
A, the proposed segmentation loss satisfactorily enhances the
RelID models, which avoids tedious tuning in some way. Since
A =1 and 4 = 2 are comparable to each other for MGN—+PS,
we intuitively prefer 2 = 1 in the final model for simplicity.

1. Does Any Part Especially Benefit From Part
Awareness Learning?

Although our part awareness learning takes into account
all body parts without bias, we are curious about whether
it is especially beneficial for some part compared to others.
We work on PCB and MGN. PCB explicitly extracts feature
from six parts (stripes), while MGN splits two and three stripes
in the second and third branch respectively. During testing,
we only adopt feature from one stripe. The performance of
each stripe is demonstrated in Fig. 13. Note that for complete-
ness, we also display scores of the three global features (BI1G,
B2G and B3G) for MGN. We can see that, the increase brought
by part segmentation is somewhat uniform across different
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Fig. 13. RelD testing with feature from only one part, reported on MSMT17.
(a) PCB+PS. (b) MGN+-PS. Feature name B/G means global feature from
the first branch, B2S/ meaning feature of the first stripe of the second branch,
and so on.

TABLE VIII

COMPARISON OF DIFFERENT DOMAIN ADAPTATION METHODS FOR
TRAINING ON COCO. FINAL REID PERFORMANCE
OF MGN+PS oN CUHKO3 Is REPORTED

Rank-1 | Rank-5 | Rank-10 mAP
No Adaptation 78.9 90.6 93.9 735
CSPL [58] 77.8 914 94.4 74.1
RoL [59] 78.7 90.9 94.4 74.5
SPGAN [39] 78.8 90.9 94.6 74.4

stripes for both PCB and MGN, except that the third stripe
of the third branch of MGN (B3S3) fails to achieve as much
improvement as other stripes. Besides, we find that scores of
the first and last stripes in PCB, approximately corresponding
to head and shoes, are much worse than other four stripes.
Feature B3S3 of MGN shows similar phenomenon as well.
Though the performance gap is interesting, we leave it in
future work.

J. Domain Adaptation When Training on COCO

As described in Section IV-B, the segmentation model
DANet trained on original COCO images fails in some cases
when inferring on ReID images, with noisy prediction. The
domain gap between COCO and RelD datasets could be a
key factor, e.g. image quality of the latter under surveillance
scenario is much worse than that of the former. To mitigate the
domain gap, we utilize three domain adaptation methods, i.e.
SPGAN [39], Curriculum Self-Paced Learning (CSPL) [58]
and Robust Learning (RoL) [59], in the process of training
DANet. For SPGAN, we first transfer COCO images into the
style of RelD datasets and then train DANet with original and
these styled COCO images. For CSPL, the following steps are
performed, 1) training DANet on original COCO, 2) finetuning
DANet with styled COCO images, 3) using DANet to predict
pseudo labels on RelD datasets, 4) finetuning DANet on RelD
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TABLE IX
TRAINING ON MSMT17 AND TESTING ON MARKET1501 AND CUHKO03

Method MSMT17 — Market1501 | MSMT17 — CUHKO3
Rank-1 mAP Rank-1 mAP
PCB 58.7 30.5 14.3 13.1
PCB+PS 62.2 334 15.5 14.2
MGN 60.7 31.8 20.1 174
MGN+PS 67.4 39.1 235 21.0

B

Fig. 14. Part segmentation on MSMT17 test images, predicted by our multi-
task method PCB+PS.

images with pseudo labels. For RoL, the procedure is 1) train-
ing DANet on original COCO, 2) using DANet to predict soft
pseudo labels on RelD datasets, 3) training DANet on both
COCO and RelD images according to Equation 4 of paper
[59]. We train MGN+PS on CUHKO3 with part segmentation
labels obtained from different models trained on COCO, and
report the final RelD performance in TABLE VIII. We observe
that different adaptation methods lead to comparable RelD
outcome. Our final choice is SPGAN, which is the simplest
implementation among three methods and has 0.9% advantage
in mAP over the baseline.

K. Generalizable Improvement

With the great progress in single-domain RelD, recently
more and more researchers are paying attention to cross-
domain setting [15], [39], [60]-[63]. In practical scenario, it is
desirable if a model trained in one scene can be easily adapted
to a new one. Otherwise, the expensive data acquisition for
re-training would be inevitable. We train PCB (or PCB+PS)
and MGN (or MGN+PS) on MSMT17 and directly test the
models on Market1501 and CUHKO3. The scores are shown
in TABLE IX. Compared to PCB, PCB+PS increases Rank-1
Accuracy by 3.5% and 1.2% for MSMT17 — Market1501 and
MSMTI17 — CUHKO3 respectively, and 2.9% and 1.1%
in mAP. Compared to MGN, MGN+PS increases Rank-1
Accuracy by 6.7% and 3.4% for MSMT17 — Market1501 and
MSMT17 — CUHKO3 respectively, and 7.3% and 3.6%
in mAP. We can see that the proposed method is indeed
generalizable across domains and is with practical meaning.

L. Visualize Segmentation and RelD Testing

Although the part segmentation head is not used during
RelD testing, we here demonstrate the segmentation quality
of PCB+PS on test images of MSMT17, as in Fig. 14.
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Top-10 Retrieval

Fig. 15. Three testing cases on MSMT17. In each case, the first and second
rows are generated by PCB and PCB+PS respectively. The first column are
query images, while the top-10 ranked gallery images are shown to the right.
In each row, green (or red) bounding boxes denote same (or different) identity
compared to the query image.

From the result we see that the segmentation task is decently
trained as well, instead of being sacrificed for the sake
of RelD. Since the two tasks can be compatibly trained,
we have the chance to utilize segmentation results to perform
local pooling or assist other body perception tasks, without
the need of an extra backbone, which we believe to be
insightful for motivating lightweight implementation in the
literature.

We show some RelD test cases upon which PCB+PS
makes improvement over PCB, as in Fig.15. The test set
is MSMT17, where we can observe various lighting and
weather conditions. The failure cases of PCB sometimes seem
understandable. For example, in case (b), both the query and
top-ranked images are male, wearing similar black clothes,
and with short hair. In case (c), PCB may be distracted
by analogous background, clothes material and color. The
proposed part awareness constraint during training success-
fully corrects the mistakes with a set of more discriminative
features.

V. CONCLUSION

In this paper, we address person RelD and propose to
enhance models with part awareness. Specifically, we embed
part knowledge into ReID models by training the additional
task of part segmentation. Although being straightforward, our
method achieves consistent improvement over three represen-
tative ReID models, evaluated on four large-scale benchmarks.
When incorporated with MGN, our model obtains state-
of-the-art performance. Through quantitative analysis upon
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PCB, we find our proposal helps to learn a set of more
diverse features for identification. Qualitative visualization on
MGN also reveals that our method encourages RelD model
to attend to more regions on human body, which could
reduce the potential of overfitting to salient body regions.
To shed light on the mechanism behind the improvement,
extensive experiments are carried out to analyze structure
of our segmentation head, part granularity in supervision,
and loss weight of segmentation task, efc. In addition to
improving RelD performance, we further demonstrate that the
segmentation task is optimized in a decent way as well. In this
way, the part labels predicted by our multi-task model may
have the chance to provide assistance for more sophisticated
model design which requires both additional body information
and lightweight implementation. We would embark on the
hypothesis in our future work.
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